

EFFECT OF DIFFERENT CHEMICALS ON GERMINATION AND SEEDLING GROWTH OF CHIRONJI (BUCHANANIA LANZAN SPRENG)

C. J. Joshi*, D. K. Sharma¹, Mutteppa Gotur and Rajni Rajan

Department of Fruit Science, ASPEE College of Horticulture and Forestry, Navsari - 396 450, (Gujarat), India. ¹Agriculture Experimental Station Paria, NAU, Navsari Agricultural University, Navsari (Gujarat), India.

Abstract

The seeds of Chironji (*Buchanania lanzan* Spreng.) were treated with H_2SO_4 (5 per cent), Mechanical scarification, GA₃ (200 and 300 ppm), KNO₃ (1 and 2 per cent), Thiourea (1 per cent), Biomix (50 g per kg seed), Cow urine (5 per cent), Cow dung slurry (5 per cent) and soaking in distilled water as control for 24 hours. Maximum germination (71.27) percentage and minimum number of days taken (22.19) for initiation of germination was noticed in seeds subjected to GA₃ 200 ppm treatment, which was at par with mechanical scarification and dipping in H_2SO_4 (5 per cent). The maximum seedling height (36.78 cm), seedling diameter (0.45 cm), number of leaves per plant (14.63 cm) and leaf area (48.47 cm²) was found in seeds treated with GA₃ 200 ppm treatment at 180 DAS. Maximum survival (64.13) percentage of chironji seedling was also noticed in seeds subjected to GA₃ 200 ppm, mechanical scarification and H₂SO₄ (5 per cent) (180 DAS). Pre sowing treatment like GA₃ 200 ppm, mechanical scarification and H₂SO₄ (5 per cent) and growth parameters of Chironji seedlings at 180 days after sowing.

Key words : Chironji, charoli, Buchanania lanzan Spreng., germination, GA, KNO,, scarification.

Introduction

Chironji or Charoli (Buchanania lanzan Spreng.), a member of the family Anacardiaceae, originated in the Indian sub-continent, is an excellent tree of agro forestry. It assumes great significance due to its multifarious uses and capacity to withstand adverse climatic conditions. At present, it is growing under forest condition as an under exploited fruit and gives monitory reward to tribal community of the country. The oily kernels are the most important part and are used in preparation of puddings. The kernel is highly nutritious and rich in protein (25-30%) and yield sweet oil, which can be used to substitute olive and almond oil. It is a medium size tree, up to 40-50 ft. height with a straight trunk. Trees have the alternate bearing nature as present in the mango. It flowers in the month of January-February and ripen in April-May. Kernels are of very high value and fetch Rs. 800-1000 per kg in market. The tree is found growing as wild in the tropical deciduous forests of north, west and central India mostly in the states of Madhya Pradesh, Bihar, Orissa, Andhra Pradesh, Chhattisgarh, Jharkhand, Gujarat,

Rajasthan and Maharashtra. In Gujarat, it is found mainly in Dang, Valsad, Vadodara and Dahod district. *Buchanania lanzan* being a vulnerable medicinal plant is included in the Red Data Book published by International Union for Conservation of Nature and Natural Resources (IUCN).

This species has high socioeconomic value providing livelihood to tribal population of the area and has high potential as commercial horticulture species. Unfortunately, over-exploitation and indiscriminate harvesting (lopping and cutting) leading severe threat to it, hence urgent conservation efforts are required at all levels. Chironji seeds exhibits poor germination percentage even if exposed to favourable conditions of germination owing to seed dormancy. It may be due to morphological factors such as hard seed, thick testa or due to incorrect storage or handling (secondary dormancy). Such seeds may reuire special treatments like stratification, scarification, soaking in water, growth regulators etc., for overcoming dormancy. Pre-sowing treatment with chemicals like GA₂, KNO₂ and thiourea (Rajamanickam et al., 2002) improve the seed germination of chironji.

^{*}Author for correspondence : E-mail : joshiaspee@gmail.com

It is felt that chironji plantation can be conserved and increased by bringing more area under new plantations. Keeping these facts in mind and also to meet out the local demand of quality planting material of chironji, the research work on effect of different chemicals on germination and seedling growth of chironji (*Buchanania lanzan* Spreng.) was conducted for developing a suitable technology facilitating easy multiplication, regeneration and conservation of this important species.

Materials and Methods

The present investigation was carries out at Agriculture Experimental Station, Navsari Agricultural University, Paria, Valsad (Gujarat), India during 2016-2017. The experimental design was Completely Randomized Design (CRD). Eleven different treatments were imposed including control. Fresh seeds from fruits were collected from the forest area of Raipipla region (Narmada, Gujarat). Healthy seeds of uniform size were selected and used for the experiment. Hundred seeds were used for each treatment, which was replicated thrice. The treatments were T_1 -H₂SO₄ at 5% (10 min.), T_2 -Mechanical scarification (Breaking hard seed coat by hammering), T₃-GA₂ at 200 ppm (24 hr), T₄-GA₂ at 300 ppm (24 hr), T₅- KNO₃ at 1% (24 hr), T₆-KNO₃ at 2% (24 hr), T_7 -Thiourea at 1% (24 hr), T_8 -Biomix at 50gm/ kg seed (24 hr), T₉-Cow urine at 5% (24 hr), T₁₀-Cow dung at 5% (24 hr), T₁₁-Control (Water soaking for 24 hr). Before sowing all seeds were soaked in water for 24 hours and after that seeds were dipped in chemicals for 24 hour except seeds treated with concentrated H_2SO_4 , which were dipped for 10 minutes. Hard seed coats were broken down by hammering in seeds which are treated with mechanical scarification before sowing. Germination parameters at definite intervals were recorded to find out the effect of these treatments on Chironji seeds. Biomix solution is made up by mixing equal amount of Phosphate solubilising bacteria, Azospirillum, Trichoderma viridae and Pseudomonas fluroscence. After imposing treatments, the seeds were shade dried for 10 minutes and were sown in polythene bag containing media 1:1:1 ratio (Soil, FYM, Sand) at 1 cm depth and were kept in the poly house. The polythene bags were watered daily till final data were recorded. Observations were recorded daily on germination parameters and monthly for vegetative parameters since the date of seed sowing. The date of first plumule emergence was recorded and computing the difference between date of sowing and plumule emergence was recorded as a number of days taken for germination. The germination percentage was calculated by using below formula :

Germination percentage (%) = (Number of seed germinated / Number of seed sown) \times 100.

The survival percentage of chironji seedling was calculated at the end of the experiment (180 DAS) using below formula :

Survival percentage (%) = (Number of seedling survived/ Number of seed germinate) \times 100.

The data collected from the five labelled seedlings in each treatment in a repetition were averaged and subjected statistical analysis (Panse and Sukhatme, 1967).

Results and Discussion

Seed germination characters

The statistical analysed data presented in the table 1, revealed that number of days taken to germination and germination percentage of chironji were significantly influenced by different pre sowing treatments. The seed subjected to T₃ (GA₃ 200 ppm) recorded earliest germination (22.19 days). This was at par with seed treated with T_2 (mechanical scarification) and T_1 (H₂SO₄ at 5%) recording 23.69 days and 24.07 days respectively. The late (41.79 days) germination was observed in control. The seeds under T₃ (GA₃ 200 ppm) recorded highest germination percentage (71.27%), which was at par with T, (mechanical scarification) and T_1 (H₂SO₄ at 5%) recording 69.71% and 68.33%, respectively. The lowest germination percentage was noticed in control (29.02%). The seed germination in chironji is erratic due to the possession of various degrees of physical dormancy caused due to hard seed coat, which is impermeable of water and oxygen (Bewley and Black, 1982). The treatment with $GA_2 200 \text{ ppm}(T_2)$ for 24 hours of soaking proved to be a best treatment. The remarkable effect of GA₂ on seed germination might be due to the involvement of GA, in the activation of cytological enzymes along with increase in cell wall plasticity and better water absorption. GA₃ acts directly on embryo relieving them from dormancy through promoting protein synthesis and elongation of coleoptiles and leaves and also helps in the production of ethylene. This ethylene invokes the synthesis of hydrolases, especially amylase, which favors the seed germination (Stewart and Freebairn, 1969). Another reason is that GA₃ stimulates seed germination by formation of a-amylase enzymes which converts insoluble starch into soluble sugars and it also initiates the radical growth by removing some metabolic blocks (Gillard and Walton, 1973). Sharma (2016) also found that chironji seeds treated with GA₃ at 200 ppm for 24 hours have considerably reduced the number of days taken for germination (23.77) and increased the germination

Treatment	Days to germinate	Germination percentage (%)	Seedling height (cm)	Stem diameter (cm)	Number of leaves/ plant	Leaf area (cm²)	Survival percentage (%)
$T_1 - H_2 SO_4 @ 5\%$	24.07	68.33	30.31	0.41	13.16	44.23	58.59
T ₂ - Mechanical scarification	23.69	69.71	35.26	0.43	13.61	48.37	60.09
T ₃ -GA ₃ @200 ppm	22.19	71.27	36.78	0.45	14.63	48.47	64.13
T ₄ -GA ₃ @300 ppm	30.31	52.61	21.93	0.36	11.25	40.03	52.77
T ₅ -KNO ₃ @1%	33.29	50.49	21.33	0.34	10.51	38.50	55.18
T ₆ -KNO ₃ @2%	33.47	54.13	22.43	0.39	10.64	42.28	58.09
T ₇ - Thiourea @ 1%	37.87	42.14	21.32	0.33	10.02	31.30	50.33
T ₈ - Biomix @ 50gm/kg seed	38.01	40.38	20.15	0.31	10.00	27.68	50.13
T ₉ - Cow urine @ 5%	33.34	33.34	22.39	0.36	10.64	38.38	51.06
T ₁₀ - Cow dung	34.99	34.99	21.24	0.34	10.38	35.33	55.09
T ₁₁ -Control	41.79	29.02	14.50	0.24	8.70	18.12	38.39
S.Em±	0.75	1.22	0.63	0.01	0.36	0.36	1.32
C.D. at 5%	2.19	3.57	1.83	0.03	1.07	1.07	3.88
CV%	4.03	4.24	4.45	4.10	5.63	1.68	4.25

Table 1 : Effect of different chemicals on germination, vegetative growth and survival percentage of chironji seedlings.

percentage (69.75 %). Significant effect of GA, on seed germination is also observed by Kumar et al. (2008), who recorded quick germination (21.20 days), better percentage of germination (72.15%) in mango seed treated with GA₃ at 100 ppm. Results of present investigation showed favorable response up to 200 ppm of GA₂ treatment for seed germination but the higher dose of GA₃ might have inhibit or suppressed the effect of germination process up to some extent. These findings are in accordance with the results of Hore and Sen (1994). The mechanical scarification treatment (T₂) removed the seed coat there by increased the permeability of air and water through seed which favours the early germination. Similar results were found by Shukla and Solanki (2000), they recorded the early seed germination up to 83 per cent by mechanically damaging the seed coat by hammer before sowing the chironji seed. Seed treatment with H_2SO_4 at 5% (T₁) for 24 hour also showed reasonably quick germination with higher germination percentage as compare to control. Fadimu et al. (2014) also recorded the germination of stony fruits of Hog plum (Spondias mombins) in response to 60% concentrated H_2SO_4 . They that 60% concentrated H_2SO_4 for 25 minutes gave the highest seed (75%) germination. Hence, we can say that for acquiring early germination and higher germination percentage one should go for soaking of seed in water for 24 hours followed by soaking in GA₃ at 200 ppm concentration for 24 hours. In addition to the above result, the present study has yielded this important information that a comparison between other treatments, Mechanical scarification and acid scarification

also showed good results with respect to reduced days to germination and higher germination percentage as compared to the control.

Vegetative growth characters

Height, diameter, number of leaves and leaf area are the important parameters in judging quality of seedlings. All the treatments seem to play positive role (table 1) in improving the vegetative growth characters of chironji under the present study. The maximum seedling height (36.78 cm), stem diameter (0.45 cm) and number of leaves per plant (14.63) at 180 days after sowing were recorded in treatment T₃ (GA₃ at 200 ppm) followed by mechanical scarification treatment recording seedling height (35.26 cm), stem diameter (0.43 cm) and number of leaves per plant (13.61). Similarly, maximum leaf area (48.47 cm²) at 180 DAS was also recorded in treatment T₂. Minimum seedling height (14.50 cm), stem diameter (0.24 cm), leaves per plant (8.70) and leaf area (18.12 cm²) was noticed in control at 180 DAS. The increased seedling height with GA, treatment might be due to the fact that this hormone increased osmotic uptake of nutrients, causing cell elongation and thus increasing height of the plant and stem diameter was also increased due to greater cell division and elongation at the stem portion (Sen et al., 1990). The production of more number of leaves might be due to higher growth of seedlings and also due to activity of GA, at the apical meristem resulting in more synthesis of nucleoprotein responsible for increasing leaf initiation (Sen and Ghunti, 1976). The maximum leaf area might be due to increased in leaf length and width, which ultimately increased in leaf area of the plant. Present findings are supported by (Sharma 2016) in chironji, who revealed that the considerable plant height (31.33 cm) and number of leaves (13) was recorded by seed treatment with GA₂ at 200 ppm concentration. Similarly, Muralidhara et al. (2015) also found better plant height (21.6 cm), more number of leaves (22.5) and leaf area (255.4 cm²) in mango stones treated with GA, at 200 ppm. Increase in different growth parameters by mechanical scarification is might be due to early germination and favorable growing conditions under scarification treatment (Sharma, 2016). Centre of forest research and human resource development, Chhindwara (Annual Report, 2006) also reported that the seed of chironji treated mechanically by hammer gave better seedling growth.

Survival percentage

The statistical analysed data presented in the table 1, revealed that the survival of chironji seedlings was significantly affected by different chemicals at the end of the experiment (180 DAS). The results revealed that among different chemicals, survival percentage at the end of the experiment (180 DAS) was found maximum (64.13%), when the seeds were treated with T_3 (GA₃ at 200 ppm). The lowest survival percentage (38.39%) was found in control. A possible reason for such higher survival percentage of chironji seedlings might be due to early germination and favorable growing conditions under GA, treatment. The observation analogues to these findings were reported by Manekar et al. (2011) in aonla. They found that seed soaked in aqueous solution of GA₂ at 200 ppm for 24 hour gave maximum survival percentage (92.73%) in aonla. Based on the overall performance, seed soaking in GA₃ at 200 ppm concentration for 24 hours was found to be the best treatment for getting higher survival rate in chironji. Thus, nurserymen and growers can use this technique for getting maximum survival of chironji seedlings.

Conclusion

Based on the results of the present investigation entitled "Effect of different chemicals on germination and seedling growth of chironji (*Buchanania lanzan* Spreng.)", it can be concluded that the seeds soaked in water for 24 hrs followed by dipping in GA₃ at 200 ppm for 24 hours gave the early germination, maximum germination percentage with optimum vegetative growth and highest survival percentage of chironji seedlings. Therefore, gibberellic acid can be used for enhancing early germination, germination percentage and production of vigorous seedlings of chironji.

References

- Annual Report (2006). *Centre of forest research and human resource development*, Chhindwara, M.P (India).
- Bewley, J. D. and B. M. Black (1982). *Physiology and biochemistry of seed germination*. Part II, Springer Verlag, New York.
- Fadimu, O. Y., O. T. H. Idowu and S. J. Ipinlaye (2014). Studies on the dormancy and germination of stony fruits of hog plum (*Spondias mombin*) in response to different presoaking seed treatments. *Int. Res. J. Biological Sci.*, 3(6) :57-62.
- Gillard, D. F. and D. C. Walton (1973). Germination of *Phaseolus vulgaris* IV. Patterns of Protein Synthesis in Excised Axes. *Plant physiology*, **51** : 1147-1149.
- Hore, J. K. and S. K. Sen (1994). Role of presowing seed treatment on germination, seedling growth and longevity of ber (*Zizyphus mauritiana* Lam) seeds. *Indian J. Agric. Res.*, 28(4): 285-289.
- Kumar, H. S. Y., G S. K. Swamy, V. C. Kanmadi, Prasadkumar and B. N. Sowmaya (2008). Effect of organics and chemicals on germination, growth and graft-take in mango. *Asian J. Hort.*, **3(2)**: 336-339.
- Manekar, R. S., P. B. Sable and M. M. Rane (2011). Influence of different plant growth regulators on seed germination and subsequent seedling growth of aonla (*Emblica officinalis* Gaertn.). *Green Farming*, **2(4)**: 477-478.
- Muralidhara, B. M., Y. T. N. Reddy, H. J. Akshitha and V. Srilatha (2015). Effect of presowing treatments on germination, growth and vigor of polyembryonic mango seedlings. *Environ. & Eco.*, 33(3):1014–1018.
- Panse, V. G. and P. V. Sukhatme (1967). *Statistical Methods for Agricultural Workers*, Indian Council of Agricultural Research, New Delhi, India.
- Rajamanickam, C., S. Anbu and K. Balakrishnan (2002). Effect of chemicals and growth regulators on seed germination in aonla (*Emblica officinalis* G.). South Indian Hort., 50(1-3):211-214.
- Sen, S. K. and P. Ghunti (1976). Effect of pre-sowing seed treatment on the germination and seedling growth in papaya. Orissa J. Hort., 4: 38-43.
- Sen, S. K., I. K. Hore and A. Bandhopadhyay (1990). Pre-sowing seed treatment and its role in germination, seedling growth and longevity of papaya. *Orissa J. Agril. Res.*, 2(3-4) : 160-164.
- Sharma, D. K. (2016). Effect of plant growth regulators and scarification on germination and seedling growth of Chironji (*Buchanania lanzan* Spreng.). Advances in Life Sciences, 5(8): 3237-3241.
- Shukla, S. K. and K. R. Solanki (2000). Studies on seed germination, plant survival and growth of chironji (Buchanania lanzan Spreng.). J. of Tropical Forestry, 16(1) :44-49.
- Stewart, E. R. and H. T. Freebairn (1969). Ethylene, seed germination and epinasty. *Plant Physio.*, **44** : 955-958.